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Abstract

Based on a multi-dimensional Riemann theta function, the Hirota bilinear
method is extended to explicitly construct multi-periodic (quasi-periodic) wave
solutions for the asymmetrical Nizhnik–Novikov–Veselov equation. Among
these periodic waves, two-periodic waves are a direct generalization of well-
known cnoidal waves; their surface pattern is two dimensional. The main
physical result is the description of the behavior of nonlinear waves in shallow
water. A limiting procedure is presented to analyze asymptotic properties of the
two-periodic waves in details. Relations between the periodic wave solutions
and the well-known soliton solutions are established. It is rigorously shown
that the periodic wave solutions tend to the soliton solutions under a ‘small
amplitude’ limit.

PACS numbers: 05.45.Yv, 45.10.−b, 95.75.Pq.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the bilinear derivative method developed by Hirota is a powerful and
direct approach to constructing an exact solution of nonlinear equations. Once a nonlinear
equation is written in bilinear forms by a dependent variable transformation, then multi-soliton
solutions are usually obtained [1–7]. Nakamura proposed a convenient way to construct a
kind of quasi-periodic solution of the nonlinear equation in his two serial papers [8, 9], where
the periodic wave solutions of the KdV equation and the Boussinesq equation were obtained
by means of Hirota’s bilinear method. This method not only conveniently obtains periodic
solutions of a nonlinear equation, but also directly gives explicit relations among frequencies,
wavenumbers, phase shifts and amplitudes of the wave. Recently, we have extended this
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method to investigate the discrete Toda lattice [10]. In the present paper, we consider the
following (2+1)-dimensional Nizhnik–Novikov–Veselov (ANNV) equation:

ut + uxxx + 3

[
u

∫
ux dy

]
x

= 0, (1.1)

which was first derived by Boiti et al using a weak Lax pair context [11]. The ANNV
equation can also be obtained from the inner parameter-dependent symmetry constraint of
the KP equation and may be considered as a model for an incompressible fluid where u
is a component of the velocity [12, 13]. In recent years, many papers have been focusing
their topics on various exact solutions of equation (1.1) including soliton solutions, Jacobi or
Weierstrass elliptic periodic solutions [16, 20]. However, these solutions are actually one-
dimensional cnoidal waves. One of the major shortcomings of cnoidal theory as a practical
model of water waves is that the theory is one dimensional, whereas the water surface is two
dimensional. The quasi-periodic solutions of equation (1.1), which can be considered as a
multi-dimensional generalization of cnoidal waves, are still unknown to our knowledge.

The objective of this paper is to construct two-periodic solutions of equation (1.1) and
provide a detailed asymptotic analysis procedure for the solutions. This paper is organized
as follows. In section 2, we briefly introduce a useful bilinear form of equation (1.1) and the
Riemann theta function. In section 3, we apply Hirota’s bilinear method to construct two-
periodic wave solutions of equation (1.1). We further apply a limiting procedure to analyze the
features and asymptotic behavior of the two-periodic wave solutions in details. It is rigorously
shown that the periodic solutions tend to the known soliton solutions under a ‘small amplitude’
limit. Finally, we briefly discuss the conditions on the construction of multi-periodic wave
solutions of equation (1.1) by using Hirota’s bilinear method in section 4.

2. The bilinear form and the Riemann theta function

In this section, we briefly introduce a useful bilinear form of equation (1.1) and some main
points on the Riemann theta function. By the dependent variable transformation [14, 15]

u = 2∂2
xy ln f (x, y, t),

equation (1.1) is then transformed into a bilinear form(
DyDt + DyD

3
x

)
f (x, y, t) · f (x, y, t) = 0, (2.1)

where the bilinear differential operators Dx,Dy and Dt are defined by

Dm
x Dn

yD
k
t f (x, y, t) · g(x, y, t) = (∂x − ∂x ′)m(∂y − ∂y ′)n

×(∂t − ∂t ′)
kf (x, y, t)g(x ′, y ′, t ′)|x ′=x,y ′=y,t ′=t .

The bilinear operators have a good property when acting on exponential functions, namely

Dm
x Dn

yD
k
t eξ1 · eξ2 = (α1 − α2)

m(ρ1 − ρ2)
n(ω1 − ω2)

k eξ1+ξ2 ,

where ξj = αjx + ρjy + ωj t + δj , j = 1, 2. More generally, we have

G(Dx,Dy,Dt) eξ1 · eξ2 = G(α1 − α2, ρ1 − ρ2, ω1 − ω2) eξ1+ξ2 , (2.2)

where G(Dx,Dy,Dt) is a polynomial about Dx,Dy and Dt . This property will be used later
and plays a key role in the construction of the periodic wave solutions.

Following the Hirota bilinear theory, equation (1.1) admits a two-soliton solution:

u2 = 2∂2
xy ln(1 + eη1 + eη2 + eη1+η2+A12), (2.3)

2
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with

eA12 = (ν1 − ν2)(μ1 − μ2)

(ν1 + ν2)(μ1 + μ2)
, ηj = μjx + νjy − μ3

j t + γj , j = 1, 2,

and here μj , νj , γj , j = 1, 2, are free constants.
To apply the Hirota bilinear method for constructing multi-periodic wave solutions of

equation (1.1), we consider a slightly generalized form of the bilinear equation (2.1). Here
we look for its solution in the form

u = u0 + 2∂2
xy ln ϑ(ξ), (2.4)

where u0 is a constant solution of equation (1.1) and the phase variable ξ is taken as the form
ξ = (ξ1, . . . , ξN)T , ξj = αjx + ρjy + ωj t + δj , j = 1, 2, . . . , N.

By substituting (2.4) into (1.1) and integrating with respect to x, we then get the following
bilinear form:

G(Dx,Dy,Dt)ϑ(ξ) · ϑ(ξ) = (
DyDt + DyD

3
x + 3u0D

2
x + c

)
ϑ(ξ) · ϑ(ξ) = 0, (2.5)

where c = c(y, t) is an integration constant. For the bilinear equation (2.5), we are interested
in its multi-periodic solutions in terms of the Riemann theta function ϑ(ξ).

Let us consider multi-periodic wave solutions of equation (1.1) based on the following
multi-dimensional Riemann theta function of genus N:

ϑ(ξ) = ϑ(ξ, τ ) =
∑
n∈ZN

e−π〈τn,n〉+2π i〈ξ,n〉. (2.6)

Here, the integer value vector n = (n1, . . . , nN)T ∈ ZN and complex phase variables ξ =
(ξ1, . . . , ξN)T ∈ CN . Moreover, for two vectors f = (f1, . . . , fN)T and g = (g1, . . . , gN)T ,
their inner product is defined by

〈f, g〉 = f1g1 + f2g2 + · · · + fNgN .

τ = (τij ) is a positive definite and real-valued symmetric N × N matrix, which we call the
period matrix of the theta function. The entries τij of the period matrix τ can be considered
as free parameters of the theta function (2.6).

In the simplest case when N = 1, solution (2.5) reproduces the cnoidal waves, which is
actually the Weierstrass or Jacobi elliptic solution (for example, see [16–20]) according to the
following relations:

℘(ξ, τ ) = −(ln ϑ11(ξ, τ )′′ + c,

cn(πϑ(0, τ )ξ, k) = ϑ01(0, τ )ϑ10(ξ, τ )

ϑ10(0, τ )ϑ01(ξ, τ )
, k =

(
ϑ10(0, τ )

ϑ(0, τ )

)2

,

where c is defined so that the Laurent expansion of ℘(ξ, τ ) at ξ = 0 has a zero constant term
and k is called the modulus of the Jacobi elliptic function. Three auxiliary (or half-period)
theta functions are defined by

ϑ01(ξ, τ ) = ϑ
(
ξ + 1

2 , τ
)
,

ϑ10(ξ, τ ) = e− 1
4 πτ+iπξϑ

(
ξ + i 1

2τ, τ
)
,

ϑ11(ξ, τ ) = e− 1
4 πτ+iπ(ξ+ 1

2 )ϑ
(
ξ + i 1

2τ + 1
2 , τ

)
.

So the waves of interest in this paper appear at the case when N = 2; solution (2.4) is
then periodic in two independent horizontal directions.
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3. Two-periodic waves and asymptotic properties

In this section, we consider two-periodic wave solutions to equation (1.1), which are a two-
dimensional generalization of one-periodic wave solutions. The two-periodic waves of interest
here have three-dimensional velocity fields and two-dimensional surface patterns.

3.1. Construction of two-periodic waves

In the case when N = 2, the Riemann theta function (2.6) takes the form

ϑ(ξ, τ ) = ϑ(ξ1, ξ2, τ ) =
∑
n∈Z2

e2π i〈ξ,n〉−π〈τn,n〉, (3.1)

where n = (n1, n2)
T ∈ Z2, ξ = (ξ1, ξ2)

T ∈ C2, ξi = αjx + ρjy + ωj t + δj , j = 1, 2. τ is a
positive definite and real-valued symmetric 2 × 2 matrix which can take the form

τ =
(

τ11 τ12

τ12 τ22

)
, τ11 > 0, τ22 > 0, τ11τ22 − τ 2

12 > 0.

In order to get some sufficient conditions, such that the theta function (3.1) satisfies the bilinear
equation (2.5), we substitute function (3.1) into the left of equation (2.5) and obtain that

G(Dx,Dy,Dt)ϑ(ξ1, ξ2, τ ) · ϑ(ξ1, ξ2, τ )

=
∑

m,n∈Z2

G(2π i〈n − m,α〉, 2π i〈n − m, ρ〉, 2π i〈n − m,ω〉) e2π i〈ξ,n+m〉−π(〈τm,m〉+〈τn,n〉)

m=m′−n=
∑

m′∈Z2

∑
n∈Z2

G(2π i〈2n − m′, α〉, 2π i〈2n − m′, ρ〉, 2π i〈2n − m′, ω〉)

× exp{−π(〈τ(n − m′), n − m′〉 + 〈τn, n〉)} exp{2π i〈ξ,m′〉}
≡

∑
m′∈Z2

Ḡ(m′
1,m

′
2) e2π i〈ξ,m′〉.

In the last line, we have introduced the notation Ḡ(m′
1,m

′
2) for the coefficient of e2π i〈ξ,m′〉. For

each fixed l = 1, 2, by shifting the j th summation index as nj = n′
j +δj,l with δj,l representing

Kronecker’s delta, we obtain that

Ḡ(m′
1,m

′
2)

=
∑
n∈Z2

G(2π i〈2n − m′, α〉, 2π i〈2n − m′, ρ〉, 2π i〈2n − m′, ω〉) e−π(〈τ(n−m′),n−m′〉+〈τn,n〉)

=
∑
n∈Z2

G

⎛
⎝2π i

2∑
j=1

(2n′
j − (m′

j − 2δjl))αj , 2π i
2∑

j=1

(2n′
j − (m′

j − 2δjl))ρj ,

2π i
2∑

j=1

(2n′
j − (m′

j − 2δjl))ωj

⎞
⎠ exp

⎧⎨
⎩−π

2∑
j,k=1

(n′
j + δjl)τjk(n

′
k + δkl)

−π

2∑
j,k=1

[(m′
j − 2δjl − n′

j ) + δjl]τjk[(m′
k − 2δkl − n′

k) + δkl]

⎫⎬
⎭ ,

=
{
Ḡ(m′

1 − 2,m′
2) e−2π(τ11m

′
1+τ12m

′
2)+2πτ11 , l = 1,

Ḡ(m′
1,m

′
2 − 2) e−2π(τ12m

′
1+τ22m

′
2)+2πτ22 , l = 2,
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which implies that if the following equations are satisfied:

Ḡ(0, 0) = Ḡ(0, 1) = Ḡ(1, 0) = Ḡ(1, 1) = 0, (3.2)

then we have Ḡ(m′
1,m

′
2) = 0 for all m′

1,m
′
2 ∈ Z, and thus function (3.1) is an exact solution

of equation (2.5).
By introducing the notations as

M = (ajl), b = (b1, b2, b3, b4)
T ,

aj1 = −4π2
∑

n1,n2∈Z2

〈2n − sj , ρ〉(2n1 − s
j

1

)
εj (n),

aj2 = −4π2
∑

n1,n2∈Z2

〈2n − sj , ρ〉(2n2 − s
j

2

)
εj (n)

aj3 = −12π2
∑

n1,n2∈Z2

〈2n − sj , α〉〈2n − sj , α〉εj (n),

aj4 =
∑

n1,n2∈Z2

εj (n),

bj = −16π4
∑

n1,n2∈Z2

〈2n − sj , α〉3〈2n − sj , ρ〉εj (n),

εj (n) = λ
n2

1+(n1−s
j

1 )2

1 λ
n2

2+(n2−s
j

2 )2

2 λ
n1n2+(n1−s

j

1 )(n2−s
j

2 )

3 ,

λ1 = e−πτ11 , λ2 = e−πτ22 , λ3 = e−2πτ12 ,

sj = (
s
j

1 , s
j

2

)
, j = 1, 2, 3, 4,

s1 = (0, 0), s2 = (1, 0), s3 = (0, 1), s4 = (1, 1),

equation (3.2) can be written as a linear system:

M(ω1, ω2, u0, c)
T = b. (3.3)

Hence, we get an exact two-periodic wave solution to equation (1.1):

u = u0 + 2∂2
xy ln ϑ(ξ1, ξ2, τ ), (3.4)

with ϑ(ξ1, ξ2) and ω1, ω2, u0, c being given by (3.1) and (3.3) respectively, while other
parameters α1, α2, ρ1, ρ2, τ11, τ22, τ12 are free. The two-periodic wave is specified by six of
the parameters α1, α2, ρ1, ρ2, τ11 and τ22.

3.2. Feature and asymptotic property of two-periodic waves

The two-periodic wave (3.4) has a simple characterization as follows.

(i) It is a direct generalization of one-periodic waves; its surface pattern is two dimensional,
i.e. there are two phase variables ξ1 and ξ2 respectively. It has two independent
spatial periods in two independent horizontal directions. The two-periodic wave may
be considered to represent periodic waves in shallow water without the assumption of one
dimensionality.

(ii) It has 2N fundamental periods {ej , j = 1, . . . , N} and {iτj , j = 1, . . . , N} in (ξ1, ξ2).
Its velocity of propagation is given by

dx

dt
= ω2α1 − ω1α2

α1ρ2 − α2ρ1
,

dy

dt
= ω1ρ2 − ω2ρ1

α1ρ2 − α2ρ1
.

5
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Figure 1. A degenerate two-periodic wave to the ANNV equation with parameters α2
α1

= ρ2
ρ1

and
α1 = 0.1, α2 = 3, τ11 = 0.2, τ12 = −0.3, τ22 = 1, ρ1 = 0.01, ρ2 = 0.3. This figure shows that
the degenerate two-periodic wave is almost one dimensional. (a) Perspective view of the wave and
(b) overhead view of the wave, with the contour plot being shown. The bright lines are crests and
the dark lines are troughs.

(iii) If parameters satisfy a ratio relation

α2

α1
= ρ2

ρ1
= k (k is a constant),

then

ω2 ∼ kω1, ξ2 ∼ kξ1, ϑ(ξ1, ξ2) ∼ ϑ(ξ1, kξ1).

Therefore, the two-periodic wave is actually one dimensional and it degenerates to a
one-periodic wave (see figure 1).

(iv) If parameters do not satisfy a ratio relation, that is,

α2

α1
�= ρ2

ρ1
,

then for any time t, phase variables ξ1 = const and ξ2 = const intersect at a unique
point. As the time t changes, this point moves in the (x, y) plane with a constant speed.
In this case, the two-periodic solution is genuinely two dimensional, and it is spatially
periodic in two independent directions in the (x, y) plane. Every two-periodic wave like
figure 2 is spatially periodic in two directions, but it need not be periodic in either the x-
or y-direction. The basic cell of the pattern seems like a hexagon, but need not be regular:
six steep wave crests form the edges of each hexagon. The six crests surrounding a trough
can be identified in pairs: opposite crests are parallel and have equal amplitudes as well
as lengths along the crests.

(v) In a subcase of the above: τ11 = τ22, α1 = α2, ρ1 = −ρ2, the two-periodic solution has
only three independent parameters (τ11, α1, ρ1), and it is called a symmetric solution. This
solution is periodic in both x- and y-directions and propagate purely in the x-direction.
An example is shown in figure 3. It is seen that the cell of its pattern is a regular hexagon
from the contour plot (see figure 3(b)).

Finally, we consider the asymptotic properties of the two-periodic solution (3.4). In a way
similar to theorem 1, we can establish the relation between the two-periodic solution (3.4) and
the two-soliton solution (2.3) as follows.

6
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Figure 2. An asymmetric two-periodic wave for the ANNV equation with parameters:
α1 = 0.1, α2 = 0.2, τ11 = 2, τ12 = 0.2, τ22 = 2, ρ1 = 0.2, ρ2 = −0.1. This figure shows
that every two-periodic wave is spatially periodic in two directions, but it need not be periodic in
either the x- or y-direction. (a) Perspective view of the wave and (b) overhead view of the wave,
with the contour plot being shown. The bright hexagons are crests and the dark hexagons are
troughs.

Figure 3. A symmetric two-periodic wave for the ANNV equation with parameters: α1 = 0.1,

α2 = 0.1, τ11 = 2, τ12 = 0.2, τ22 = 1, ρ1 = 0.1, ρ2 = −0.1. This figure show that the symmetric
two-periodic wave is periodic both in x- and y-directions and propagate purely in the x-direction.
(a) Perspective view of the wave and (b) overhead view of the wave, with the contour plot being
shown. The bright hexagons are crests and the dark hexagons are troughs.

Theorem 1. Assume that (ω1, ω2, u0, c)
T is a solution of system (3.3), and for the two-periodic

wave solution (3.4), we take

αj = μj

2π i
, ρj = νj

2π i
, δj = γj + πτjj

2π i
,

τ12 = A12

2π i
, j = 1, 2,

(3.5)

with μj , νj , γj , j = 1, 2, and A12 being as those given in (2.3). Then we have the following
asymptotic relations:

u0 −→ 0, c −→ 0, ξj −→ ηj + πτjj

2π i
, j = 1, 2,

ϑ(ξ1, ξ2, τ ) −→ 1 + eη1 + eη2 + eη1+η2+A12 ,

as λ1, λ2 → 0.

(3.6)

7
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So the two-periodic solution (3.4) just tends to the two-soliton solution (2.3) under a certain
limit, namely

u −→ u2, as λ1, λ2 → 0.

Proof. We expand the periodic wave function ϑ(ξ1, ξ2) in the following form:

ϑ(ξ1, ξ2, τ ) = 1 + (e2π iξ1 + e−2π iξ1) e−πτ11 + (e2π iξ2 + e−2π iξ2) e−πτ22

+ (e2π i(ξ1+ξ2) + e−2π i(ξ1+ξ2)) e−π(τ11+2τ12+τ22) + · · · .
Further by using (3.5) and making a transformation ω̂j = 2π iωj , j = 1, 2, we get

ϑ(ξ1, ξ2, τ ) = 1 + eξ̂1 + eξ̂2 + eξ̂1+ξ̂2−2πτ12 + λ2
1 e−ξ̂1

+ λ2
2 e−ξ̂2 + λ2

1λ
2
2 e−ξ̂1−ξ̂2−2πτ12 + · · ·

−→ 1 + eξ̂1 + eξ̂2 + eξ̂1+ξ̂2+A12 , as λ1, λ2 → 0,

where ξ̂j = μjx + νjy + ω̂j t + γj , j = 1, 2.

It remains to prove that

c −→ 0, ω̂j −→ −μ3
j , ξ̂j −→ ηj , j = 1, 2, as λ1, λ2 → 0. (3.7)

As in (3.15), we can expand each function in {aij , bj , j = 1, 2, 3, 4} into a series with λ1, λ2.
It is slightly more tedious than (3.15), but this process is easily carried out by using symbolic
computation software Mathematica or Maple. Actually, we only need to make the first-order
expansions of matrix M and vector b with λ1, λ2 to show the asymptotic relations (3.7). Here
we consider their second-order expansions to see deeper relations among parameters for the
two-periodic solution (3.4) and the two-soliton solution (2.3). The expansions for the matrix
M and the vector b are given by

M =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
−8π2ρ1 0 −24π2α2

1 2
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ λ1

+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 −8π2ρ2 −24π2α2

2 2
0 0 0 0

⎞
⎟⎟⎠ λ2 +

⎛
⎜⎜⎝

−32π2ρ1 0 −96π2α2
1 2

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ λ2

1

+

⎛
⎜⎜⎝

0 −32π2ρ2 −96π2α2
2 2

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ λ2

2

+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−8π2(ρ1 − ρ2) 8π2(ρ1 − ρ2) − 8π2(ρ1 + ρ2)λ3 −24π2(α2 − α1)
2 2

⎞
⎟⎟⎠ λ1λ2

+ o
(
λk

1λ
j

2

)
, k + j � 2, (3.8)

and

b =

⎛
⎜⎜⎝

0
−32π4α3

1ρ1

0
0

⎞
⎟⎟⎠ λ1 +

⎛
⎜⎜⎝

0
0

−32π4α3
2ρ2

0

⎞
⎟⎟⎠ λ2 +

⎛
⎜⎜⎝

−512π4α3
1ρ1

0
0
0

⎞
⎟⎟⎠ λ2

1 +

⎛
⎜⎜⎜⎜⎝

0
−512π4α3

2ρ2

0
0
0

⎞
⎟⎟⎟⎟⎠ λ2

2

8
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+

⎛
⎜⎜⎝

0
0
0

−32π4(α1 + α2)
3(ρ1 + ρ2)λ3 − 32π4(α1 − α2)

3(ρ1 − ρ2)

⎞
⎟⎟⎠ λ1λ2

+ o
(
λk

1λ
j

2

)
, k + j � 2, (3.9)

where o
(
λk

1λ
j

2

)
denote higher infinitesimal than λk

1λ
j

2, k + j � 2.
We also assume the solution of system (3.3) in the following form:⎛

⎜⎜⎝
ω1

ω2

u0

c

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ω
(0)
1

ω
(0)
2

u
(0)
0

c(0)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ω
(1)
1

ω
(1)
2

u
(1)
0

c(1)

⎞
⎟⎟⎟⎠ λ1 +

⎛
⎜⎜⎜⎝

ω
(2)
1

ω
(2)
2

u
(2)
0

c(2)

⎞
⎟⎟⎟⎠ λ2 +

⎛
⎜⎜⎜⎝

ω
(11)
1

ω
(11)
2

u
(11)
0

c(11)

⎞
⎟⎟⎟⎠ λ2

1

+

⎛
⎜⎜⎜⎝

ω
(22)
1

ω
(22)
2

u
(22)
0

c(22)

⎞
⎟⎟⎟⎠ λ2

2 +

⎛
⎜⎜⎜⎝

ω
(12)
1

ω
(12)
2

u
(12)
0

c(12)

⎞
⎟⎟⎟⎠ λ1λ2 + o

(
λk

1λ
j

2

)
, k + j � 2. (3.10)

Substituting (3.8)–(3.10) into (3.3) and comparing the same order of λ1, λ2, we obtain the
following relations:

c(0) = c(1) = c(2) = c(12) = 0,

ρ1ω
(0)
1 + 3α2

1u
(0)
0 = 4π2α3

1ρ1, ρ2ω
(0)
2 + 3α2

2u
(0)
0 = 4π2α3

2ρ2,

ρ1ω
(1)
1 + 3α2

1u
(1)
0 = 0, ρ2ω

(1)
2 + 3α2

2u
(1)
0 = 0,

c(11) − 32π2ρ1ω
(0)
1 − 96π2α2

1u
(0)
0 = −512π4α3

1ρ1,

c(22) − 32π2ρ2ω
(0)
2 − 96π2α2

2u
(0)
0 = −512π4α3

2ρ2,

. . . .

To make relations (3.7) hold, we choose u
(0)
0 = ω

(1)
1 = ω

(1)
2 = 0, and thus

u0 = o(λ1, λ2) −→ 0,

c = −384π4α3
1ρ1λ

2
1 − 384π4α3

2ρ2λ
2
2 + o

(
λ2

1, λ
2
2

) −→ 0,

ω1 = 4π2α3
1 + o(λ1, λ2) −→ 4π2α3

1,

ω2 = 4π2α3
2 + o(λ1, λ2) −→ 4π2α3

2, as λ1, λ2 → 0,

which implies (3.7). Therefore, we conclude that the two-periodic solution (3.4) tends to the
two-soliton solution (2.3) as λ1, λ2 → 0. �

4. Discussion on the conditions of N-periodic wave solutions

In this section, we consider a condition for an N-periodic wave solution of equation (1.1). The
theta function takes the form

ϑ(ξ, τ ) = ϑ(ξ1, . . . , ξN , τ ) =
∑
n∈ZN

e2π i〈ξ,n〉−π〈τn,n〉, (4.1)

where n = (n1, . . . , nN)T ∈ ZN, ξ = (ξ1, . . . , ξN)T ∈ CN, ξi = αjx + ρjy + ωj t + δj , j =
1, . . . , N and τ is a N × N symmetric positive definite matrix.

9
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In order to get the conditions, such that function (4.1) satisfies the bilinear equation (2.5),
we substitute (4.1) into the left of equation (2.5) and obtain

G(Dx,Dy,Dt)ϑ(ξ1, . . . , ξN , τ ) · ϑ(ξ1, . . . , ξN , τ )

=
∑

m,n∈ZN

G(2π i〈n − m,α〉, 2π i〈n − m, ρ〉, 2π i〈n − m,ω〉)

× exp(2π i〈ξ, n + m〉 − π(〈τm,m〉 + 〈τn, n〉))
≡

∑
m′∈ZN

Ḡ(m′
1, . . . , m

′
N) e2π i〈ξ,m′〉.

In the last line, we have introduced the notation Ḡ(m′
1, . . . , m

′
N) for the coefficient of e2π i〈ξ,m′〉.

By shifting the j th summation index as nj = n′
j + δj,l with δj,l representing Kronecker’s

delta, we obtain that

Ḡ(m′
1, . . . , m

′
N) =

∑
n∈ZN

G(2π i〈2n − m′, α〉, 2π i〈2n − m′, ρ〉, 2π i〈2n − m′, ω〉)

× exp{−π(〈τ(n − m′), n − m′〉) + 〈τn, n〉}

= Ḡ(m′
1, . . . , mj − 2, . . . , m′

N) × exp

(
−2π

N∑
k=1

τkjm
′
j + 2πτjj

)
.

This implies that if

Ḡ(m1, . . . , m
′
N) = 0, (4.2)

for all possible combinations of m1, . . . , mN = 0, 1, then we have Ḡ(m′
1, . . . , m

′
N) = 0 for

all m′
1, . . . , m

′
N ∈ Z, and thus function (4.1) is an exact solution of the bilinear equation (2.5).

For the asymptotic property, the N-periodic wave solutions of the KdV equation going to its
corresponding N-soliton solutions ever was described in Mumford’s book [21].

Now we consider the number of equations and some unknown parameters. Obviously,
the number of equations of the type (4.2) is 2N . On the other hand, we have parameters
τij = τji, c, u0, αi, ρi, ωi , whose total number is 1

2N(N + 1) + 2N + 2. Among them,
2N parameters τii , α1, ρi are taken to be the given parameters related to the amplitudes
and wavenumbers (or frequencies) of N-periodic waves. Hence, the number of the unknown
parameters is 1

2N(N +1)+2. The number of equations is greater than the unknown parameters
in the case when N � 4. This fact means that if equation (4.2) is satisfied by the unknowns,
we have at least N-periodic wave solutions (N � 4). In this paper, we consider a two-periodic
wave solution to equation (1.1), which belongs to the cases when N = 2. There are still
certain numerical difficulties in the calculation for the case N > 2, which will be considered
in our future work.

Acknowledgments

This paper was completed while I was visiting the Department of Mathematics of the University
of Missouri, USA, during my research stay from November 2007 to October 2008. I am very
grateful to Fritz for his kind invitation and the department for its warm hospitality. I would
like to express my special thanks to the referees for their valuable suggestions which have
been followed in the present improved version of the paper. The work was supported by
grants from National Key Basic Research Project of China (2004CB318000) and Shanghai
Shuguang Tracking Project (08GG01).

10



J. Phys. A: Math. Theor. 42 (2009) 095206 E Fan

References

[1] Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57 797
[2] Hirota R 2004 Direct Methods in Soliton Theory (Berlin: Springer)
[3] Hu X B and Clarkson P A 1995 J. Phys. A: Math. Gen. 28 5009
[4] Hu X B, C X Li, Nimmo J J C and Yu G F 2005 J. Phys. A: Math. Gen. 38 195
[5] Hirota R and Ohta Y 1991 J. Phys. Soc. Japan 60 798
[6] Zhang D J 2002 J. Phys. Soc. Japan 71 2649
[7] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[8] Nakamura A 1979 J. Phys. Soc. Japan 47 1701–5
[9] Nakamura A 1980 J. Phys. Soc. Japan 48 1365

[10] Hon Y C and Fan E G 2008 Mod. Phys Lett. B 22 547
[11] Boiti M, Leon J J P and Manna M 1986 Inverse Problems 2 271
[12] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[13] Estevez P G and Leble S 1995 Inverse Problems 11 925
[14] Y Ohta 1992 J. Phys. Soc. Japan 61 3928
[15] Yu G F and Tam H W 2008 J. Math. Anal. Appl. 344 593
[16] Dai C Q, Wu S S and Cen X 2008 Int J. Theor. Phys. 47 1286
[17] Dai C Q, Liu F Q and Zhang J F 2008 Chaos Solitons Fractals 36 437
[18] Wang L, Dong Z Z and Liu X Q 2008 Commun. Theor. Phys. 49 1
[19] Hu H C, Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 22 327
[20] Qian X M, Lou S Y and Hu X B 2004 Z. Naturforch. A 10 645
[21] Mumford D 1984 Tata lectures on theta II Progress in Mathematics vol 43 (Boston: Birkhäuser)
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